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The effect of entrained bubbles on the structure of a vortex ring is studied using
particle image velocimetry. Quantitative information on the velocity and vorticity
distribution within the vortex core is obtained from multiple images recorded with
two 65 frames per second, 35 mm cameras. Bubble trajectories and velocities are
also determined from these images. It is demonstrated that for certain combinations
of vortex strengths and bubble diameters, a few microscopic bubbles, at very low
overall void fraction, shift and macroscopically deform the structure of the vortex.
For example, five 512 µm diameter bubbles, entrained by a vortex with core diameter
of 2 cm and strength of 160 cm2 s−1, displace the core by 3.5 mm and fragment the
core into two regions with peak vorticities that are 20% higher than the original
maximum vorticity. The same phenomenon is observed with laminar, transitional and
turbulent vortices. Dimensional analysis along with the experimental data show that
the distortion is maximum when the bubbles settle, following entrainment by the
vortex, in a region located between 20% and 40% of core radius. The governing di-
mensionless parameters and trends are identified and discussed. The vortex distortions
are explained in terms of changes to the liquid momentum caused by the entrainment
of the bubbles. It is argued and proven in detail in Appendix A that the change to
the liquid momentum due to the presence of the bubble is equal to the bubble volume
multiplied by the local stresses that exist in the absence of the bubble. These stresses
include the gravity-induced (buoyancy) and hydrodynamic pressure gradients as well
as viscous stresses. The buoyancy displaces the core of the vortex upward whereas the
force due to hydrodynamic pressure gradients reduces the core size and as a result
increases the vorticity. Estimated distortions agree with the experimental data.

1. Introduction
1.1. Motivation and rationale

In a previous work, we studied the motion of bubbles with diameters of less than
1 mm during entrainment by a vortex ring (Sridhar & Katz 1995) and measured
the forces acting on them. The buoyancy was determined from the bubble size,
which was measured at high magnification using holography. Triple-exposure, high-
resolution particle image velocimetry (PIV) images (see the sample in figure 1) allowed
measurements of the velocity and acceleration of both the liquid and the bubbles,
from which the pressure gradients and the inertia were estimated assuming an added
mass coefficient of 0.5. This assumption did not introduce a major error since the
inertia was small. Using Stokes flow expressions it was also shown that the Bassett
force was negligible. As shown in figure 1, the inertia, buoyancy and forces due to the
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Figure 1. Part of a triple exposure PIV image containing a 710µm bubble at (x, y) surrounded by
four 20 µm neutrally buoyant particles located at (xi, yi). Also shown are the corresponding vector
diagrams of velocities and forces on this bubble (Sridhar & Katz 1995). The subscripts b, p, i, d, l
in the force balance refer to buoyancy, hydrodynamic pressure, inertia, drag and lift, respectively.
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Figure 2. The experimental lift coefficients and results of theoretical and numerical models.

hydrodynamic pressure were then balanced with the bubble drag and lift. The drag
was parallel to the relative velocity and the lift was normal to it. The results were
used for estimating the drag and lift coefficients as well as their dependence on the
Reynolds number and local vorticity.

The drag coefficients were found to be very close to that of a solid sphere, indicating
that the bubble surface was contaminated. The results for the lift coefficient are
plotted in figure 2 along with other theoretical predictions. As addressed in detail
in the previous paper, the primary reasons for the discrepancies are simplifying
assumptions and differences in the corresponding boundary conditions. For example,
Saffman’s (1965) expression for the lift coefficient is derived for Stokes flow, in Dandy
& Dwyer (1990) a particle is held rigidly, and in Auton, Hunt & Prud’homme (1988)
the analysis is based on potential flows. Consequently the estimated lift forces are
different. These results agree with Naciri (1992), which to the best of our knowledge
is the only other source of experimental data on lift coefficients on bubbles. Bubble
trajectories predicted using these lift and drag coefficients substituted in the equation
of motion for the bubble,

dU b

dt
= −2g+ 3

{
∂U

∂t
+ (U · ∇)U

}
+

3
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Cd|U rel |U rel +

3
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24
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ν

, α =
aω
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compared very well with the experimental data. Equation (1a) is based on the
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expression derived by Maxey & Riley (1983), and U b, g, U , U rel , a, ω, ν, Cd, Cl
are the bubble velocity, gravity, fluid velocity, relative velocity of the bubble, bubble
radius, local vorticity, kinematic viscosity, drag coefficient and the lift coefficient,
respectively. This equation incorporates the effects of inertia (assuming a virtual mass
coefficient of 0.5), gravity, lift, drag and local pressure gradients. The Basset force was
neglected after estimating its magnitude and showing that it was negligible in our test
conditions.

The next question is to what extent do bubbles affect the surrounding fluid? It is
already well established that bubbles rising in a quiescent fluid induce liquid motion
(Bessler & Littman 1987; Bhaga & Weber 1981; Fan & Tsuchiya 1990; Katz &
Meneveau 1996). In the present paper, we study the impact of this bubble-induced
motion on the structure of vortex rings. The rings are around 12 cm in diameter and
their strengths vary from 100 to 500 cm2 s−1. Bubble diameters range from 250 to
750 µm. We will show that under certain conditions even a few entrained bubbles at
very low void fractions shift, elongate and distort the core of laminar, transitional
and turbulent vortices. For sample photographs that illustrate the extent of vortex
deformation, see figure 11(a–g). Here the vortex core diameter is about 2 cm and the
bubble diameter is 484 µm. Detailed information about the experimental conditions
in these figures, along with other examples, is given in §§ 2 and 3. Quantitative data
presented in § 3 also indicate that during this process the vortex core is displaced
upwards by several bubble diameters and the vorticity distribution within the core is
fragmented into smaller structures with higher peak vorticity.

1.2. General background

There are limited experimental and numerical results on the two-way interactions
between bubbles and vortex structures. Research in this field has primarily focused
on studies with solid particles as the dispersed phase (Eaton 1994; Hetsroni 1993;
Elgobashi & Truesdell 1993; Crowe 1991; Gore & Crowe 1989; Fleckhaus, Hishida
& Maeda 1987). The specific gravity of the dispersed phase plays an important role
in determining its effect on the liquid phase since heavy particles tend to centrifuge
away from the centre of a vortex while buoyant particles are entrained into the core.
Consequently, the effect of bubbles on a vortex cannot be directly inferred from the
results with heavy particles.

Loth & Cybrinzski (1994) experimentally studied the effect of large bubbles (di-
ameter > 1 mm) on the thickness of shear layers. The test flow field was a planar
mixing layer with a uniform dilute bubble concentration across the high-speed side.
They found that bubbles increased or decreased the shear layer thickness depending
on the experimental condition. The decrease in thickness was qualitatively associated
with increased eddy and braid coherence whereas the increase in thickness was linked
to bubble wake excitation of the flow. Rightley & Lasheras (1995) experimentally
analysed bubble dispersion and interphase coupling in a free shear layer. Particular
emphasis was given to the energy budget of the flow field resulting from the interac-
tion between the bubble cloud and the large-scale structures dominating the mixing
region. They found the energy redistribution in the carrier fluid to be very inhomo-
geneous with asymmetric peaks. This asymmetry was partly due to the influence of
the void fraction field. Both papers clearly indicate that bubbles do have a significant
effect on the carrier flow field. The present paper sheds further light on this problem
by studying the effect of bubbles on the underlying structure of a vortex.

Taeibi-Rahni, Loth & Tryggvason (1994) studied the interaction between a large
cylindrical bubble and a two-dimensional free shear layer by direct simulations of
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the full Navier–Stokes equations. They found that the entrained bubble affected the
flow when it escaped and cut through the eddy. Buoyancy and centripetal effects were
responsible for the interactions, which typically resulted in reduced eddy coherence
and size. The unsteady bubble wake caused an increase in velocity fluctuation levels.
In this particular problem, the length scale of the dispersed phase and continuous
phase were comparable. Keeping in mind that the present bubble diameter is only
about 2% of the core size, DNS will encounter difficulties in resolving both the
macroscopic flow and the details of the flow structure around individual bubbles, but
such information is required if one wishes to explain the phenomena presented later
in the paper (see for example figure 11).

Ruetsch & Meiburg (1994) analysed numerically the evolution of a temporally
growing two-dimensional shear layer, seeded with a dilute concentration of bubbles.
Though their simulated flow was close to the present experimental conditions, their
bubble concentrations were large and as a result a continuum approximation was used
for the force applied by the bubbles on the liquid. The motion of the continuous phase
was modelled with a single-phase-fluid Navier–Stokes equation, which in addition to
the usual terms, included a source terms for momentum transport caused by the
dispersed phase. In their model the source term was equal to the buoyancy force
of the bubbles. The motion of the dispersed phase was obtained by integrating the
Lagrangian equation of bubble motion. They observed that bubbles concentrated at
equilibrium locations that depended on the bubble size and vortex strength. However,
contrary to the present measurements, the accumulation of bubbles was found to
reduce the vorticity and pressure gradients near the vortex centre. This disagreement
is partly due to differences in flow conditions (e.g. bubble concentrations), but also in
part because they neglect the effect of hydrodynamic pressure gradients in the vicinity
of the bubble on the momentum introduced by the bubble into the fluid. This issue
is discussed further in § 4 of this paper.

2. Experimental set-up and measurement techniques
2.1. Test facility and vortex generator

As shown in figure 3, the experiments are performed in a 0.69 m × 0.76 m × 1.98 m
water tank with windows on all sides for illumination and flow visualization. Vortex
rings are generated by discharging a fixed volume of fluid with a piston–cylinder
arrangement. The wall of the cylinder is 1

4
in. thick and the edge of the cylinder,

where the vortex ring is formed, is bevelled at 30◦ to ensure a smooth roll-up of the
shear layer. At the end of a stroke the piston comes to rest flush with the end of the
cylinder. The strength and structure of a ring generated with this method depends
on the orifice geometry, length of the discharged slug and the velocity of the piston
(Didden 1979; Glezer 1988). All experiments are conducted with the same cylinder
diameter (0.1 m) and slug length (0.1 m). Rings generated by this system are typically
12 cm in diameter, with circulation ranging from 100 to 500 cm2 s−1 (determined from
PIV data). The convection speeds of the rings vary from 6 to 15 cm s−1.

A rodless pneumatic actuator (figure 3) controls the motion of the piston. The
maximum stroke length is 0.5 m, and the peak speed is 2 m s−1. Two solenoid valves
regulate the air pressure to the actuator (up to 690 KPa). The actuator is initially
restrained by an electromagnet to help synchronize its motion with the operation
of other instruments. The displacement of the piston is recorded using a linear
potentiometric sensor. The analog output is acquired with a PC-based data acquisition
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Figure 3. (a) The experimental set-up. (b) Plan view of the vortex chamber identifying the location
of cameras A and B. (c) The vortex chamber with a reference coordinate system.

system. Figure 4(a) is a typical profile of the piston displacement. The data are
smoothed and differentiated to obtain the velocity profile of the piston (figure 4b).

The strength of a vortex ring generated by this arrangement can be estimated by
the cylindrical slug model (Glezer 1988). Here the vortex is modelled as a cylindrical
volume of fluid of fixed length, L0, and diameter, D0, moving at a velocity U0(t) for a
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Figure 4. (a) Typical piston displacement and (b) velocity profiles of the vortex generator.

time T . The initial circulation of the ring is given by

Γ0 =

∫ T

0

U2
0 (t)

2
dt. (2)

In figure 5, the actual strength of a vortex ring, Γ , measured using PIV, is compared
to its strength estimated using equation (2). Measurements are performed five ring
diameters downstream of the tip of the cylinder. In agreement with Didden (1979)
and Glezer (1988), the measured circulation is typically 35% larger than Γ0.

The transition of laminar vortex rings into turbulence has been studied experimen-
tally by many researchers including Glezer (1988), Didden (1979), Maxworthy (1974,
1977) and Sallet & Widmayer (1974). From a dimensional analysis of the generating
conditions, Glezer (1988) identified the conditions that lead to the generation of
laminar and turbulent rings (figure 6). The four points plotted in this figure define
the range of vortex rings studied in the present experiments. Images of rings cor-
responding to these four conditions are provided in figure 7(a–d). These images are
generated by seeding the interior of the vortex ring generator (only) with fluorescent
particles and illuminating a vertical section of the ring with a continuous laser sheet.
The exposure time of these extended exposure images is 33 ms (further details on the
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Figure 6. The strength of four vortex rings that cover the range of conditions studied during the
present experiments. The transition line is reproduced from figure 7 of Glezer (1988). Images of the
vortex rings corresponding to the data points 1, 2, 3 and 4 are presented in figure 7(a–d).

seeding, laser and optical set-up are provided in the following section). It is evident
from the extent of mixing in the near wakes that the ring in figure 7(a) is laminar
while that in figure 7(d) is already turbulent.

In the present experiment, bubbles are injected in a uniform train, 0.5 m downstream
of the tip of the cylinder. Following the cylindrical coordinate system shown in figure
3(c), the location of bubble injection is at r = 0.45 m, θ = 270◦, z = 0.5 m. Thus,
the bubbles are introduced only at the plane of symmetry below the ring and as a
result remain in the same plane during the early stages of the entrainment process.
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(a) (b)

(c) (d)

Figure 7 (a–d). Images of vortex rings corresponding respectively to data
points 1, 2, 3 and 4 in figure 6.

After entrainment, when the bubbles distort the core of the vortex and disturb the
symmetry of the flow, they migrate out of the plane and travel azimuthally along the
torroidal core of the vortex from θ = 270◦ to θ= 90◦. We refer to this process of
bubbles leaving their original plane of injection and migration along the core as a
‘bubble escape’, though in reality the bubble remains within the vortex at a different
azimuthal location.

The bubble injection system consists of a regulator, an air filter, a fine metering
valve and a glass injector. The latter is made by stretching a glass capillary tube under
heat (Ran & Katz 1991). The tips of the injectors are usually sealed as a result of the
stretching and are later etched with hydrofluoric acid until the external diameter of the
nozzle is around 10 µm. The bubble size and injection rate are controlled by varying
the injector diameter and air pressure. The diameters of the bubbles are measured by
recording holograms (Ran & Katz 1991) and high-magnification silhouette images
of the bubble train. Since the bubbles are released into a quiescent flow, their size
is governed by the buoyancy force, the surface tension force at the bubble–injector
interface and the stability of the surface of the bubble. Consequently, the bubble
diameter is many times larger than the injector diameter.

2.2. Bubble and liquid velocity measurements

Quantitative information on the velocity and vorticity distributions within the vortex
core is obtained using PIV. Detailed background on PIV can be found in Adrian
(1991). Bubble trajectories and velocities are also determined from the same images.
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Figure 8. (a) Characteristic velocity map of an undistorted vortex. The reference vector in the upper
right-hand corner of the picture has a horizontal and vertical component of 15 cm s−1. (b) Vorticity
map obtained by computing the velocity gradients from the vector map presented in (a). Contours
are in steps of −13.35 s−1.

For this purpose, the flow field is seeded with microscopic (20–30 µm in diameter),
neutrally buoyant particles (specific gravity between 0.95 and 1.05) containing fluo-
rescent dye. When illuminated with a copper vapour laser, the dye in the particles
fluoresces at 573 nm, i.e. in the yellow range, while the bubbles scatter the incident
light (512 nm) and appear green. This difference in colour enables us to distinguish
the two phases (Sridhar, Ran & Katz 1991). Automated computation of the velocity
field of the ring is not complicated by the presence of the bubbles since the area void
fraction is very low, ∼ 10−3 (when defined as the area occupied by the bubbles divided
by the area of the vortex core), and there are no large voids in the liquid flow field.

The Cu vapour laser is pulsed at 300 Hz (the pulse width is ∼ 40 ns), and images
are recorded with two 65 frames per second, 35 mm, Hulcher cameras (figure 3). A
typical run provides about 60 frames of useful data. The laser pulses and camera
speed are adjusted so that each frame is exposed at least three times. The negative is
digitized at a resolution of 3072 × 2048 pixels using a Nikon LS3500 slide scanner.
The velocity field within the vortex ring is determined using the ‘auto-correlation
technique’, described by Dong, Chu & Katz (1992). Additional error analysis is dealt
with in Roth, Hart & Katz (1995). The vorticity distribution is calculated from the
spatial velocity gradients as

ω(i, j) =
1

2

v(i+ 1, j)− v(i− 1, j)

∆x
− u(i, j + 1)− u(i, j − 1)

∆y
, (3)

where u and v are the horizontal and vertical velocity components, i, j are the
horizontal and vertical indices and ∆x, ∆y are the horizontal and vertical dimensions
of the grid. Sample velocity and vorticity maps of a vortex ring obtained by this
technique are presented in figures 8(a), and 8(b) respectively. As discussed in Appendix
B, which contains a brief error analysis, the uncertainty in the velocity and vorticity
field measurements is about 1% and 10%, respectively.
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Figure 9. (a) A typical velocity map of the core of a distorted vortex ring. The reference vector in
the upper right-hand corner of the picture has a horizontal and vertical component of 15 cm s−1.
(b) Vorticity map of a distorted vortex ring corresponding to the velocity field presented in (a).
Contours are in steps of 9.1 s−1.

The accuracy of the above procedure is significantly reduced when measuring the
velocity fields of distorted vortices. The large velocity gradients within the cores
result in significant variations in the displacement between particle pairs within each
interrogation window. In such situations, we use a ‘particle tracking’ technique to
compute the local velocity field. Here, individual particle displacements are determined
by matching traces of the same particle and measuring the distance between them.
The velocity at the location of the particle is determined from the timing of the laser
pulses. The randomly distributed velocity vectors are mapped onto a regular grid
using a bilinear interpolation scheme (Sridhar & Katz 1995) from which the vorticity
field is computed. Figures 9(a) and 9(b) are typical velocity and vorticity plots of a
distorted vortex ring obtained using this technique. The uncertainty in fluid velocity
and vorticity measured using this technique is about 0.9% and 10%, respectively (see
Appendix B).

3. Experimental results
3.1. The process of entrainment, vortex deformation and bubble escape

At the beginning of each experiment a test run is performed to verify that the vortex
core does not distort in the absence of bubbles. Figures 10(a) and 10(b) are typical
images of one such experiment with a laminar vortex ring recorded 450 ms apart. It
is clear that the core of the vortex remains intact in the absence of bubbles and that
the particle traces follow a nearly circular path around the core centre.

The experiments are then repeated with bubbles in the path of the rings. Figures
11(a)–11(f) are a time series of images of one such experiment with an initially
laminar vortex ring in the presence of 484µm bubbles. Notice that at the start of this
run (figure a), the vortex core is intact. The bubble injector is located to the right
of the vortex and a few rising bubbles are visible at the lower right-hand corner of
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(a) (b)

Figure 10 (a, b). Typical images of a laminar vortex ring recorded 450 ms apart, when no bubbles
are entrained. The flow is from left to right and images are recorded with Camera A.

this image. As the ring passes through the cloud, it entrains bubbles, which are the
bright traces in the centre of the remaining images (figure 11b –f). Along with bubble
entrainment, the vortex core becomes progressively distorted. Qualitatively, the core
appears to be elongated and inclined at about 45◦ to the horizontal. The particle
traces now appear to be following an elliptical path around the vortex ‘centre’ (note
that the point of zero velocity is not the centre of vorticity) with the bubbles located
close the upper right-hand corner of the ellipse. The distortion is maximum at 321 ms
(figure 11c) when the vortex centre seems to break into two distinct structures. Such
multiple structures are also evident from figure 9. At subsequent times, apparently
due to the vortex distortion, the bubbles leave the plane of the laser sheet and migrate
azimuthally along the core of the ring. This ‘escape’ and migration process cannot be
seen directly in the samples, but can be observed visually during the experiments. As
the bubbles begin to escape, when they are only slightly out of focus, they appear as
smudges in figures 11(e) and 11(f). As the number of bubbles in the core decreases the
core distortions become weaker. Eventually, at 677 ms (figure 11g), the core regains
its original shape.

A similar process of bubble entrainment, vortex distortion, bubble escape, and the
vortex returning to its original shape is also observed with transitional and turbulent
vortex rings, provided that the ‘appropriate’ (see § 4.2) number and sizes of bubbles
are entrained. Figure 12 is a sample image of a transitional ring with a ring Reynolds
number Γ = 170 cm2 s−1 entraining 512 µm bubbles. Figure 13 is an image of a typical
turbulent ring with Γ = 330 cm2 s−1 entraining 1100 µm bubbles. In both cases, the
elongation and orientation of the core are qualitatively similar to that in figure 11(c)
(the opposite directions are a result of using a camera located on the other side of
the test facility).

Quantitative data on the entrainment, deformation, bubble escape and return to the
original shape can be obtained from the vorticity plots of the vortex rings. A sample
vorticity plot of an undistorted vortex ring containing mostly concentric contours
is provided in figure 8(b). In the absence of bubbles, the vortex simply translates
horizontally at a constant velocity and the vorticity distribution remains essentially
the same. A time sequence of vorticity plots of a similar vortex ring as it entrains
bubbles is presented in figure 14(a–g). The mean vortex strength is 160 cm2 s−1 and it
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(a)  t = 0 ms (b)  t =180 ms

(c)  t =320 ms (d)  t =390 ms

(e)  t = 460 ms ( f )  t =670 ms

Figure 11 (a–f ). Successive images of a laminar vortex ring as it entrains 484 µm bubbles. The
vortex ring is moving from left to right and images are recorded with Camera A.

entrains 512 µm diameter bubbles, whose locations in the vortex are indicated by solid
circles. (Note that the circle diameter is not indicative of the bubble size.) Initially,
there are no entrained bubbles in the vortex and the core appears as a single structure
(figure 14a). The total strength of the ring is 126 cm2 s−1 with a peak vorticity of
87 s−1. At this time, only part of the vortex core is in the camera field of view, which
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Figure 12. Image of an initially circular, transitional vortex ring (see figure 6) after entraining
512 µm bubbles. The flow is from right to left as the image was recorded with Camera B.

Figure 13. Image of an initially circular turbulent vortex ring after entraining 1100 µm bubbles.
The flow is from right to left as the images were recorded with Camera B.

explains the lower circulation. The initial centroid of vorticity of the vortex core in
figure 14(a) is chosen as the origin of the coordinate system (X = 0; Y = 0) for this
entire sequence. This centroid is defined as

Xcen =
∑
i

Xiω
2
i

/∑
i

ω2
i , Ycen =

∑
i

Yiω
2
i

/∑
i

ω2
i , (4)
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where ωi is the local vorticity at (Xi, Yi). The centroid is weighted with the square of
the local vorticity in order to reflect (bias towards) the location of regions of higher
vorticity. The centroid in subsequent vorticity maps is indicated by a solid square
inscribed in a circle.

At 286 ms (figure 14b) the strength of the vortex is 160 cm2 s−1. At this time
the vorticity distribution begins to distort. With core distortion, the peak vorticity
increases by 10% and the centroid is displaced upwards by 0.23 cm. At 477 ms (figure
14c), the distortion is more pronounced. The core now consists of two regions of
high vorticity with the bubbles located slightly below and between them. The peak
vorticity is 12% higher than the initial value and the centroid is further displaced
upwards by 0.33 cm.

At 667 ms (figure 14d), five bubbles are entrained into the core of the vortex, which
is fragmented into two distinct regions. The peak vorticity within these regions is
128% and 116% of the original value while the total circulation remains unchanged,
at 156 cm2 s−1. Both inclined and elongated structures are significantly displaced from
the original centre. The high-vorticity regions are located 0.64 cm and 0.52 cm above
the original core location, while the centroid is elevated by 0.33 cm.

In figure 14(e), which is a plot of the core at 955 ms, the two regions of high vortic-
ity are horizontal and more diffused. The total strength is still 160 cm2 s−1. Here, the
bubbles are no longer clustered and are instead located farther away from the centroid.
At subsequent times (figures 14f and 14g), the bubbles leave the plane of the light
sheet and escape by rising along the core of the ring. The regions of high vorticity then
coalesce (figure 14f) and the vortex eventually regains its original configuration and
elevation at 1600 ms (figure 14g). At this time only one bubble is left within the core.
The overall convection speed of the vortex core remains unchanged during the whole
process. Also, following the distortion, the vortex is located in the same region as a vor-
tex with a similar strength that is not seeded by bubbles. These trends indicate that the
observed vortex shift and fragmentation is not a result of overall vortex ring instability.

Not all entrained bubbles cause such a major distortion of the core, i.e. displace-
ments of several bubble diameters and fragmentation into secondary structures with
25% higher vorticity. Small bubbles whose final locations after entrainment are ‘close’
(see § 3.2 for a dimensional analysis) to the centre of the core do not have a noticeable
effect on the vortex structure. For example, in figure 15, which is the vorticity map of
a turbulent vortex (Γ = 311 cm2 s−1) after entraining five 512 µm bubbles, it is evident
that the vortex core is not distorted significantly. Here the bubbles simply remain
within the core for the duration of the experiment (∼ 500 ms). In addition, ‘large’
bubbles (see the discussion in § 3.2) whose location following entrainment is ‘far’ from
the core also have little effect on the vorticity distribution (see § 3.2).

There are also certain combinations of bubble diameters and vortex strengths
where the vortices are ‘marginally’ affected. Here, ‘marginal’ means core displacement
of less than one bubble diameter, but still distortion with about 10% increase in
the peak vorticity. Figure 16 is an example of such an interaction, where a ring
with Γ = 192 cm2 s−1 entrains four 1100 µm bubbles. Here too the entrainment and
distortion process is similar to that described in figure 14(a–g) but the distortions
are less severe. In the results and discussion that follow in § 3.2, the test conditions
of the present experiment are classified into these three groups, i.e. severe, marginal
and no distortion of the core. We will show that the important parameter governing
the extent of core deformation is the location of the bubble after entrainment. This
conclusion will be derived from the experimental data and a dimensional analysis of
the forces acting on the bubble.
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Figure 14. For caption see facing page.

3.2. Relationships between bubble size, vortex strength and deformation

When a bubble is entrained into a vortex, and the core does not deform, the bubble
eventually comes to rest relative to the vortex centre. At this location, which we
define as the ‘final’ location of the bubble, the bubble acceleration is zero and it
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Figure 14. Time sequence vorticity plots of the core of a vortex entraining 512µm bubbles. The
location of the centre of the vortex at time t = 0 ms is at (x, y) = (0, 0). The location of the
centre at subsequent time steps is indicated in subsequent time steps by a square inscribed in a
circle. Vorticity contours are in steps of 20 s−1. Entrained bubbles are represented by the solid
circles. (a) Time = 0 ms, Γ = 126 cm2 s−1; (b) 286 ms, 160 cm2 s−1; (c) 477 ms, 164 cm2 s−1; (d) 667 ms,
156 cm2 s−1; (e) 955 ms, 160 cm2 s−1; (f) 1146 ms, 166 cm2 s−1; (g) 1528 ms, 164 cm2 s−1.
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Figure 15. Example of an unaffected vortex ring after entraining five 512 µm bubbles. Vorticity
contours are in steps of 20 s−1. Time = 360 ms, Γ = 311 cm2 s−1.

Figure 16. Example of a marginally affected vortex ring after entraining four 1100 µm bubbles.
Vorticity contours are in steps of 20 s−1. Time = 700 ms, Γ = 192 cm2 s−1.
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simply translates rectilinearly with the vortex ring. Such horizontal motion is evident,
for example, in figure 13. Thus, the equation of motion of the bubble (equation (1a))
reduces to

0 = −2g+ 3

{
DU

Dt

}
+

3

4a
Cd|U rel |U rel +

3

4a
Cl |U rel |2U rel × ω

|U rel ||ω| . (5)

This equation states that the sum of the forces acting on the bubble, including
the pressure gradients due to gravity (buoyancy), drag, lift, hydrodynamic pressure
gradients and virtual mass (although the bubble acceleration is zero, the liquid
acceleration is not and as a result the virtual mass is equal to 50% of the liquid
acceleration). For the purpose of dimensional analysis, let us assume that the bubble
comes to rest at a distance r from the centre of a vortex with strength Γ and radius
R, containing a uniform vorticity distribution. Then, an appropriate velocity scale for
Urel is Γr/2πR2 and for the local pressure gradient is ρlrΓ

2/4π2R4. Equation (5) can
now be written in a non-dimensionalized form as

ḡ =
3

8π2
r̄

(
DU

Dt̄

)
+

3

32π2
Cd
r̄2

ā
|U rel |U rel +

3

32π2
Cl
r̄2

ā
|U rel |2U rel × ω

|U rel ||ω| , (6a)

Cd = f(ā, r̄, Γ/ν), Cl = h(ā, r̄, ω), (6b)

where

ḡ =
gR3

Γ 2
, r̄ =

r

R
, U =

U

Γr/2πR2
, t̄ =

2πR2

Γ
, ω =

ω

Γ/πR2
, a =

a

R
. (6c)

The dimensionless parameters in (6a) and (6b) are r̄, ā, ḡ and Γ/ν. Of these parameters,
r̄ is a dependent variable while the other three are independent. Note that r̄ is only
indirectly dependent on Γ/ν through the drag coefficient. In the present range of
Reynolds numbers 20 < Re < 80, the values of Cd are of the same order of magnitude
(it changes from 1.2 to 2.8) and consequently r̄ is expected to be weakly dependent
on Γ/ν. Similarly, the dependence of Cl on ω is also weak (Sridhar & Katz 1995).
Thus, the dependence of Cd and Cl on Γ/ν and ω are neglected in the present
discussion. The only independent parameters left are ḡ and ā. As R is constant in the
present study, ḡ and ā can be combined to form a single non-dimensional variable
ḡā3 = ga3/Γ 2. This term represents the ratio between buoyancy and the force due to
the hydrodynamic pressure gradients.

The present test conditions are plotted in figure 17 with r̄ and ga3/Γ 2 as the two
axes. The value of r̄ (dimensionless ‘final’ location) for each experimental condition
is determined by solving (6a) and (6b). Due to its implicit form, we have found that
the simplest approach is to position a bubble randomly within the core and follow
its trajectory by integrating its equation of motion (1a, b) until it comes to rest with
respect to the vortex centre. The procedures of integration are discussed in Sridhar &
Katz (1995) and summarized briefly in § 4 of this paper. The vortex core is assumed
to be 1 cm in radius, with uniformly distributed vorticity of Γ/πR2. Γ , R and a are
based on the experimental data. Notice that all the present test conditions, which are
plotted in figure 17, collapse onto a single curve. The slight scatter in the data is due
to the weak dependence of r̄ on the ring Reynolds number, Γ/ν, which is neglected
in the dimensional analysis.

The observed extent of vortex deformation, defined based on the three levels
introduced before (severe distortion – figure 14, no distortion – figure 15 and marginal
distortion – figure 16) are also identified in figure 17. It is evident that bubbles that
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Figure 17. The present experimental conditions and extent of vortex distortion.

severely distort and displace the vortex core have final locations that fall in the range
0.2 < r̄ < 0.4. Bubbles located at r̄ < 0.13 do not cause distortion and for r̄ > 0.45,
ga3/Γ 2 > 5× 10−6 the bubbles are not entrained by the vortex. In the latter case the
gravity is sufficiently high compared to the hydrodynamic pressure gradients that the
bubbles escape and as a result do not cause vortex deformation. Regions with strictly
marginal distortions are 0.14 < r̄ < 0.2 and 0.4 < r̄ < 0.45, i.e. on both sides of the
severe distortion range. However, the marginal distortion cases are scattered over the
entire r̄ > 0.13 range. As will be discussed also in § 4, besides the final location of the
bubble the extent of deformation is governed by the number of entrained bubbles and
the residence time of the bubbles within the vortex core. Consequently, even if the
bubbles are in a size range that is prone to cause severe deformation, too few bubbles
or a too short residence time may reduce the extent of distortion. The range prone to
distortion is clearly 0.2 < r̄ < 0.4 and it is bounded on both sides with regions prone
to marginal distortion.

In order to explain the observed trends, recall that when the bubble reaches its
final location the relative velocity Urel = Γr/2πR2 is proportional to r. Thus, the
drag and lift forces are proportional to a2r2 (neglecting Reynolds number effects),
whereas the forces due to hydrodynamic pressure gradients and virtual mass are
proportional to a3r(DU/Dt=Γ 2r/4π2R4). The buoyancy is obviously proportional
to a3. These relationships imply that forces due to buoyancy, pressure gradients and
inertia increase more rapidly with a than the lift and drag. Consequently, as the
bubble size increases its final location has to move outward, where the quadratic
increase of lift and drag with r, being faster than the pressure gradients, virtual mass
and buoyancy, compensates for the slower increase of lift and drag with a. As a
result, the final location of a bubble as well as all the forces acting on it increase with
bubble size and its final location.

As will be discussed in detail in § 4.1, the forces introduced due to the presence of
the bubble, that do not exist in its absence, are the drag, lift and virtual mass. Their
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combined effect would result in the formation of a ‘wake’, or induced liquid motion
around the bubble. The magnitude of these forces and as a result their impact on the
liquid momentum increases (at varying degrees) with r̄. Thus, one should expect that
the deformation to the core would increase with increasing bubble radius and final
location. This conclusion is consistent with the trends demonstrated figure 17 only
for r̄ < 0.4. Larger bubbles that settle at larger r̄ cause less vortex deformation for
two reasons. First, although these larger bubbles induce greater liquid motion locally,
they are located farther from the core centre and as a result they mostly affect the
flow at the perimeter of the vortex. Second, the characteristic residence time of these
bubbles in the plane of symmetry at the bottom of the vortex (θ= 270◦) is shorter
due to the increased likelihood of escape with increasing buoyancy force and being
close to edge of the core. In fact, there is no bubble entrainment at r̄ > 0.45.

4. Discussion
The present experimental results demonstrate that a few microscopic bubbles

can significantly distort a vortex ring. This phenomenon is quite unexpected and
has not been reported earlier. Furthermore, a simple dimensional analysis shows a
correlation between the final location of the entrained bubbles and the extent of
vortex deformation. Both phenomena can be understood by carefully examining the
nature and effect of bubble-induced liquid motions.

4.1. Changes in the liquid momentum due to the presence of bubbles

The surface forces acting on a bubble are buoyancy (pressure gradients in the liquid
resulting from gravity), hydrodynamic pressure (that would exist in the absence of the
bubble), added mass, drag (viscous and form), lift and Basset forces (Maxey & Riley
1983). The only body force acting on the bubble is its own weight, which is negligible.
Thus, the sum of the surface forces acting on the bubble is zero. A sample balance
of these forces is shown in figure 1(a). To determine the effect of the bubble on the
liquid momentum one needs to identify the effect on the surrounding liquid caused by
replacing a body of liquid by a massless sphere. As argued in detail in Appendix A
and also recently in Druzhinin & Elgobashi (1998), the motion of a bubble in a flow
field changes the liquid momentum (applies a force on the liquid) by ∆F b, where

∆F b = ρVB

(
DU 0

Dt
− g
)
. (7a)

Here U 0 is the undisturbed flow field at the location of the bubble that would exist
in the absence of the bubble, and VB is the bubble volume. Note that (DU 0/Dt)− g
is simply the local stress gradients that would exist in the absence of the bubble. On
the bubble surface these stress gradients are balanced by the drag, lift, virtual mass
and Bassett forces. The last is negligible in the present case as discussed before. Thus,
∆F b can also be expressed as

∆F b = −ρVB
[

3

8a
Cd|U rel |U rel +

3

8a
Cl |U rel |2U rel × ω

|U rel ||ω| −
1

2

(
DU b

Dt
− DU 0

Dt

)]
. (7b)

In their analysis, Druzhinin & Elgobashi (1998) use expressions for the drag force in
Stokes flow and neglect the effect of the lift.
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4.2. Effects of bubbles on the location and shape of the vortex core

In order to estimate the impact of the bubbles on the flow structure within the
vortex it is necessary to estimate the buoyancy and pressure gradients along the
trajectory of the bubble. The buoyancy is known from the bubble size (= 4

3
πa3ρg),

but the pressure gradients depend on the location of the bubble within the vortex.
As shown in the next section, the bubble trajectory can be determined using equation
(1a, b) and the measured lift and drag coefficients. These forces must be inserted in
the Navier–Stokes equations for the liquid motion to determine the impact of the
bubble on the vortex structure. In the context of this paper, however, we only wish
to explain the experimental observation and confirm that the momentum exchange
due to the entrainment of a few bubbles can actually cause the observed phenomena.
For this purpose we look at a simple vortex prior to deformation and estimate
the overall impact of the momentum added by the bubbles. The buoyancy force is
always pointing upward, but the force due to the hydrodynamic pressure gradient
(∂p/∂r= ρv2

θ/r) varies in magnitude and direction during the entrainment process.

Buoyancy effects Let us first consider the effect of just the buoyancy. During the
entrainment process the bubble encircles the centre of the core while continuously
introducing momentum into the fluid. Consequently, the effect of the bubble is
distributed over the entire core of the vortex. We need to estimate the thickness of
the region affected by the bubble, keeping in mind that we deal with a single layer of
bubbles affecting a disk of fluid. Assuming a thickness equal to the bubble diameter,
2a= 512 µm, the mass of the affected liquid is approximately equal to 2πaR2ρl . The
acceleration, A, of this fluid mass, due to the momentum introduced by the buoyancy
of the five bubbles, is then A= 5 4

3
a3g/2aR2 = 2.0 cm s−2. Thus, the displacement of the

core due to bubble buoyancy, being equal to 1
2
At2 and t = 600 ms, is 0.36 cm. Note

that the choice of thickness is somewhat arbitrary. In reality the displaced fluid layer
should be wider due to the effect of viscosity. For example, if one chooses the width
of a wake due to viscous diffusion, (4νt)1/2, and t as about one half the characteristic
entrainment time (0.5t = 300 ms), the width doubles and the core displacement is
halved. However, it is clear from these estimates that the five microscopic bubbles
can displace the core by the measured amount.

Pressure gradient effect A similar analysis can also be carried out with the mo-
mentum introduced by the pressure gradients. As the bubbles spiral around the
core, before they reach their ‘final location’, the added momentum is always directed
radially toward the centre of the vortex. Thus, as a crude estimate, there is no net
displacement of the core. Instead, the bubbles cause a reduction in the area of the
core and as a result, an increase in the local vorticity. When the bubbles reach their
final location, above and ahead of the vortex centre, and stop spiralling, the direction
of the added momentum becomes steady, but still points towards the centre. In this
case the hydrodynamic pressure gradients oppose in part the buoyancy effect.

As discussed in the next subsection, where the experimental trajectories are com-
pared to numerical predictions, the bubbles spiral around the centre during a signif-
icant portion of the period before the vortex reaches its maximum deformed state
(figure 14d). Thus, the discussion focuses first on the effect of a bubble spiralling
around the core. The pressure gradient in a Rankine vortex is ρlrΓ

2/4π2R4. At the
‘final location’, for which the vortex distortion is maximum, r/R = 0.3 (§ 3.2). Using
the experimental Γ = 160 cm2 s−1 and R = 1 cm (figure 14), the pressure gradient is
195 dyne cm−3, i.e. about one fifth of the gravity-induced pressure gradients. For the
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same disk of liquid discussed before, whose width is equal to the bubble diameter,
the spatially and temporally averaged acceleration towards the vortex centre is about
0.4 cm2 s−1. Thus, in 600 ms the radius of the core would be reduced by 0.07 cm, from
1 cm to 0.93 cm (causing out of plane motion). This radial acceleration would then
cause a 14% reduction in the core area, increasing the average vorticity by almost
16%. This estimate is consistent with the level of increase in the experimental peak
vorticity. However, one should be careful in interpreting this agreement since the es-
timates here are crude and refer to the mean vorticity. However, this discussion does
demonstrate that although the magnitude of the hydrodynamic pressure gradients is
significantly smaller than the buoyancy, their effects should be accounted for due to
their distinctly different impact on the flow. In the case of a vortex, even at low void
fractions, bubbles spiralling around the core cause a reduction in the core diameter
and as a result, an increase in vorticity.

When the bubbles reach their final location the direction of the force due to
hydrodynamic pressure gradients becomes steady and as a result simply displaces
the local fluid. This phase does not occur in the case of figure 14, since the vortex
deformation results in bubble escape. However, in other cases, such as when there are
fewer bubbles and less vortex deformation, a steady motion at the final location has
been observed (e.g. see figure 13). In this case the hydrodynamic pressure gradients
oppose the effect of gravity and cause a horizontal force against the direction of vortex
ring motion. In the present conditions the downward force is small, only 14% of the
gravity (accounting for the angle), and the gravity dominates the vertical distortion.

4.3. Computation of bubble trajectories

As noted in the previous subsection, one needs to determine the bubble trajectory in
order to estimate its effect on the surrounding flow. In this subsection we demonstrate
that by using the lift coefficients shown in figure 1(b), drag coefficients on a solid
sphere, neglecting the Basset force (see the justification in Sridhar & Katz 1995) and
using a virtual mass coefficient of 0.5, it is possible to estimate the bubble trajectory
even in the present complex flow. The results are compared to the measured bubble
trajectories.

We use the flow field whose vorticity distributions are shown in figure 14(a–g).
The mean circulation is 160 cm2 s−1, the convection speed of the ring is 10.4 cm s−1.
There are five 512 µm diameter bubbles, whose initial locations are obtained from the
experimental data. The bubble trajectories are determined by solving the equation
of motion for each bubble (equation (1a, b)) using a fourth-order Runge–Kutta
method. The drag coefficient is determined using a Reynolds number based on the
instantaneous relative velocity (Clift, Grace & Weber 1978), and the lift coefficient is
estimated using the local vorticity (although it is a weak function of the vorticity). The
velocity field within the vortex ring and the unsteady term in the equation, ∂U l/∂t,
are computed from PIV data measured at four discrete time steps (0, 97, 287, and
477 ms). Linear interpolation and second-order finite difference schemes are used for
calculating velocities, spatial gradients and vorticities at intermediate time steps. The
time steps are 1 ms.

The calculated trajectories of the entrained bubbles are plotted in figure 18(a–e)
along with the experimental bubble locations on the four available images. As is
evident from the plots, the predicted trajectories and entrainment times match the
experimental data reasonably well, though there is some discrepancy in the trajectory
of the fourth bubble (figure 18d). Here a discrepancy at an early stage caused the
bubble to be transported in a substantially different direction. Note that this bubble
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Figure 18. Comparisons between the measured and computed trajectories of the bubbles in figure
14. Solid line: computed trajectories obtained by integration of equation (1a, b). Open circles: the
measured locations of the corresponding bubbles obtained from the PIV images. The experimental
positions of each bubble are available at four time intervals starting at 0, 97, 287 and 477 ms. Within
each interval, the four bubble positions are separated by 3.3 ms. Diamonds: computed location at
the same instant as the first circle in each time interval. (a–e) Bubbles 1–5.

is also located ‘far’ from the other bubbles even after the entrainment into the
core. In general however, the solution to equation (1a) using lift and drag coefficients
measured in an undeformed vortex, can clearly predict the bubble trajectory even when
the vortex is deformed. One should be careful, however, in drawing conclusions from
these results. When the local shear forces and pressure gradients are sufficiently large
to cause bubble deformation (unlike the present case, for which the characteristic
Eötvös number is 0.086), one should expect to find significant variations in the
magnitudes of the lift and drag coefficients. For example, a recent DNS analysis
of large bubbles rising in a vertical shear flow (Ervin & Tryggvason 1997) has
demonstrated that when bubble deformation becomes significant, the lift coefficient
becomes negative.
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5. Summary and conclusions
The influence of entrained microscopic bubbles on the strength and structure

of a vortex is measured using cinematic PIV. It is demonstrated that for certain
combinations of vortex strengths and bubble diameters, a few microscopic bubbles,
at very low overall void fraction, shift and macroscopically deform the structure of
the vortex. For example, five 512 µm diameter bubbles, entrained by a vortex with
core diameter of 2 cm and strength of 160 cm2 s−1, displace the core by 3.5 mm (35%
of core radius and seven times the bubble diameter) and fragment the core into two
regions with peak vorticities that are 20% higher than the original maximum vorticity.
The total strength of the ring remains unchanged. When the bubbles escape from the
vortex (in the present case they move along the centre of the ring to its upper side),
the core returns to its original circular shape and location. The same phenomenon is
observed with laminar, transitional and turbulent vortices. Thus, the process described
here is clearly caused by the bubbles and is not related to ring stability.

Dimensional analysis along with the experimental data show that the distortion
is maximum when the bubbles settle, following entrainment by the vortex (final
location), in a region located between 20% to 40% of core radius. Smaller bubbles,
that settle closer to the centre, do not affect the liquid momentum significantly, while
larger bubbles are located too far from the core to distort it. ga3/Γ 2 is identified as
the non-dimensional parameter governing the ‘final’ bubble location in the present
conditions (constant core radius). In general cases one should also take account of the
core size, using parameters such as gR3/Γ 2 or a/R. The effect of the ring Reynolds
number, Γ/v, is small in the current range of flow conditions.

The vortex distortions are explained in terms of changes to the liquid momentum
caused by the entrainment of the bubbles. In Appendix A it is argued and proven
that the change to the liquid momentum due to the presence of the bubble is equal
to the bubble volume multiplied by the local stresses that exist in the absence of the
bubble. These stresses include gravity-induced (buoyancy) and hydrodynamic pressure
gradients as well as viscous stresses. Both the buoyancy and the hydrodynamic
pressure gradients have a significant impact on the structure of the vortex core, but
their effects are distinctly different. During the stage when the bubbles spiral around
the core the buoyancy translates the core vertically, while the hydrodynamic pressure
gradients ‘squeeze’ it causing out-of-plane motion (continuity). Consequently, the core
vorticity should increase. Estimated distortions agree with the experimental data.
When the bubbles reach their final location, a phase that does not occur when the
vortex is severely distorted, the direction of the force due to hydrodynamic pressure
gradients becomes steady and as a result it simply displaces the local fluid.

This project was sponsored by the Office of Naval Research under grant number
N00014-91-J-1176. The program manager is E. Rood. The authors would also like to
gratefully acknowledge the numerous suggestions of and discussions with Omar Knio,
Charles Meneveau and Andrea Prosperetti. Thanks are also due to the reviewers of
this manuscript that led to substantial improvements and corrections.

Appendix A. Modification of the liquid momentum due to the presence of
a bubble

The momentum equation for a control volume with moving boundaries (Panton
1996) is

d

dt

∫
cv

ρUi dV =
∑

Fi −
∫
cs

ρUi(Uj − wj)nj ds, (A 1)
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Figure 19. The control volume (CV) discussed in Appendix A.

where Ui is the liquid velocity, wi is the velocity of the boundary of the control volume
(cv) surrounded by a surface (cs), and Fi is a force acting on this volume. Let us
choose a control volume with fixed external boundaries that contains a single bubble,
i.e. it has moving internal boundaries and fixed external boundaries (figure 19). For
the purpose of the present discussion, we shall treat the bubble as a massless sphere.
On the bubble wall the normal components of the liquid velocity and the bubble
velocity are equal. Thus, ∫

SB

ρUi(Uj − wj)nj ds = 0, (A 2)

where SB is the bubble surface. On the external boundary wi = 0. Thus,∫
SE

ρUi(Uj − wj)nj ds =

∫
SE

ρUiUjnj ds,

where SE is the external surface. Then, (A 1) becomes

d

dt

∫
cv

ρUi dV =
∑

Fi −
∫
SE

ρUiUjnj ds. (A 3)

Also, based on the Leibnitz theorem (Panton 1996)

d

dt

∫
cv

ρUi dV =

∫
cv

∂

∂t
ρUi dV +

∫
cs

ρUiwjnj ds

=

∫
cv

∂

∂t
ρUi dV +

∫
SE

ρUiwjnj ds+

∫
SB

ρUiwjnj ds. (A 4)

On the external boundary wi = 0. However, the integral on the bubble surface is not
necessarily zero, unless one assumes a no-slip condition (Ui = wi). This assumption
is consistent with the drag being equal to that of a solid sphere. For Ui = wi on the
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bubble surface, i.e. a constant Ui = Ubi,∫
SB

ρUiwjnj ds = ρ(Ub)i

∫
SB

(Ub)jnj ds = 0.

Thus, (A 4) is reduced to

d

dt

∫
cv

ρUi dV =

∫
cv

∂

∂t
ρUi dV . (A 5)

Combining (A 5) with (A 3) gives∫
cv

∂

∂t
ρUi dV =

∑
Fi −

∫
SE

ρUiUjnj ds. (A 6)

The force term can be expressed as∑
Fi =

∫
SE

(−pni + σijnj) ds+

∫
SB

(−pni + σijnj) ds+

∫
VT

ρgi dV −
∫
VB

ρgi dV , (A 7)

where VT is the total volume and VB is the bubble volume. Since the mass of the
bubble is assumed to be zero, the sum of the surface forces on the bubble is also zero,
thus ∫

SB

(−pni + σijnj) ds = 0. (A 8)

The remaining equation is∫
cv

∂

∂t
ρUi dV +

∫
SE

ρUiUjnj ds =

∫
SE

(−pni + σijnj) ds+

∫
VT

ρgidV −
∫
VB

ρgi dV . (A 9)

This equation is different from that of a liquid flow without a bubble in two terms:
the buoyancy force on the bubble (last term) and the boundary of integration in the
first term (the bubble moves). The remaining issue is whether the displacement of a
bubble affects the liquid momentum and to what extent. We intend to show that the
displacement of a small bubble alters the liquid momentum by an amount equal to the
sum of the buoyancy force and the local liquid acceleration in the absence of the bubble
multiplied by the bubble volume and the liquid density. To prove this statement we
assume that the bubble volume is substantially smaller than the control volume and
as a result the boundary conditions are unaffected by the presence of the bubble (a
discussion follows). At time t1 the bubble is located at x1 (bold letters imply a vector)
and occupies the volume V1. At t2 > t1, the bubble is located at x2 and occupies
V2. We assume that V1 =V2. The rest of the control volume (excluding V1 and V2) is
V3. Aside from the displacement of the bubble there is no external unsteady forcing.
Also, we define the mean liquid velocity within V1 and V2 (when they contain liquid)
according to∫

V2 at t1

ρUi dV = ρVBŨi(x2, t1),

∫
V1 at t2

ρUi dV = ρVBŨi(x1, t2), (A 10)

where VB is the (small) bubble volume and the tilde indicates an average over the
volume. The velocity field is divided into a flow that would exist in the absence of the
bubble, U0−, and the (small) perturbation to this flow field caused by the presence of
the bubble, ∆Ub:

Ui = U0
i + ∆Ub

i . (A 11)
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In a small time step t2 − t1 the change in momentum within the control volume is

∆

∫
cv

ρUi dV =

∫
cv at t2

ρUi dV −
∫
cv at t1

ρUi dV

=

∫
V1 at t2

ρUi dV +

∫
V3 at t2

ρUi dV −
∫
V2 at t1

ρUi dV −
∫
V3 at t1

ρUi dV . (A 12)

Using (A 11)

∆

∫
cv

ρUi dV =

∫
V3 at t2

ρ(U0
i + ∆Ub

i ) dV −
∫
V3 at t1

ρ(U0
i + ∆Ub

i ) dV + ρVB

×[Ũ0
i (x1, t2) + ∆Ũb

i (x1, t2)
]− ρVB[Ũ0

i (x2, t1) + ∆Ũb
i (x2, t1)

]
. (A 13)

For a small displacement

Ũ0
i (x2, t1) = Ũ0

i (x1, t2) +
∂Ũ0

i

∂xj
(x2j − x1j)− ∂Ũ0

i

∂t
∆t, (A 14)

∆Ũb
i (x2, t1) = ∆Ũb

i (x1, t2) +
∂∆Ũb

i

∂xj
(x2j − x1j)− ∂∆Ũb

i

∂t
∆t. (A 15)

Thus,

∆

∫
cv

ρUi dV =

∫
V3 at t2

ρ(U0
i + ∆Ub

i ) dV −
∫
V3 at t1

ρ(U0
i + ∆Ub

i ) dV − ρVB

×
[
∂Ũ0

i

∂x
+
∂∆Ũb

i

∂x

]
(x2j − x1j) + ρVB

[
∂Ũ0

i

∂t
+
∂∆Ũb

i

∂t

]
∆t. (A 16)

As ∆t→ 0∫
cv

∂

∂t
ρUi dV =

∫
V3

∂

∂t
ρU0

i dV +

∫
V3

∂

∂t
ρ∆Ub

i dV

+ρVB

(
∂Ũ0

i

∂t
+
∂∆Ũb

i

∂t

)
− ρVB

[
∂Ũ0

i

∂xj
+
∂∆Ũb

i

∂xj

]
Ubj, (A 17)

where Ub is the bubble velocity which is equal to the local liquid velocity due to no
slip. Based on the assumption that the bubble does not alter the boundary conditions
compared to a flow without a bubble∫

V1+V2+V3

∂

∂t
ρU0

i dV = −
∫
SE

ρUiUjnj ds+

∫
SE

(−pni + σijnj) ds+

∫
VT

ρgi dV . (A 18)

And using (A 9) ∫
V1+V2+V3

∂

∂t
ρU0

i dV =

∫
cv

∂

∂t
ρUi dV +

∫
VB

ρgi dV . (A 19)

Substituting in (A 17)∫
V1+V2+V3

∂

∂t
ρU0

i dV −
∫
VB

ρgi dV

=

∫
V3

∂

∂t
ρU0

i dV +

∫
V3

∂

∂t
ρ∆Ub

i dV + ρVB

(
∂Ũ0

i

∂t
+
∂∆Ũb

i

∂t

)
−ρVB

[
∂Ũ0

i

∂xj
+
∂∆Ũb

i

∂xj

]
Uj. (A 20)
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Since for a short displacement∫
V2

∂

∂t
ρU0

i dV ≈
∫
V1

∂

∂t
ρU0

i dV ≈ ρVB
(
∂Ũ0

i

∂t

)
, (A 21)

(A 20) then becomes

ρVB

[
∂Ũ0

i

∂t
+

(
∂Ũ0

i

∂xj
+
∂∆Ũb

i

∂xj

)
(U0

j + ∆Ub
j )

]
−
∫
VB

ρgi dV

=

∫
V3

∂

∂t
ρ∆Ub

i dV + ρVB

(
∂∆Ũb

i

∂t

)
. (A 22)

The right-hand side involves integration of ∂∆Ub
i /∂t over the entire liquid within the

control volume (V3 and one bubble volume form the entire cv, although the second
term is of a higher order since VB is small). On the left-hand side ∂∆Ub

i /∂x− is small
compared to ∂U0

i /∂x−. Keeping only first-order terms

ρVB

[
DŨ0

i

Dt
− gi

]
=

∫
cv

∂

∂t
ρ∆Ub

i dV = ∆Fbi , (A 23)

where D indicates material derivative. Equation (A 23) shows that displacement of
a bubble in an unsteady and non-uniform flow field alters the momentum of the
remaining liquid in the control volume (denoted as ∆Fbi ). This result brings into
question the validity of assuming steady boundary conditions (both stresses and
momentum flux). If the velocity within the control volume changes, it should affect
the conditions at the boundary. Furthermore, a bubble in a flow field for which
∂p/∂xi 6= 0 deforms and changes its volume. Thus, the exact solution to this problem
is complex and is beyond the scope of the present discussion.

Note that during infinitesimal bubble displacement V1 and V2 overlap and as a
result there is a potential problem with the validity of (A 10). However, this issue has
no impact on the final results. To illustrate this point, suppose V1 and V2 overlap and
the joint volume is Vj . Thus, the boundaries on the right-hand side of (A 12) would
change to

∆

∫
cv

ρUi dV =

∫
cv at t2

ρUi dV −
∫
cv at t1

ρUi dV

=

∫
V1−Vj at t2

ρUi dV +

∫
V3 at t2

ρUi dV −
∫
V2−Vj at t1

ρUi dV −
∫
V3 at t1

ρUi dV ,

namely the integration is performed only on the portion that contains liquid. Using
the same simplification introduced in (A 10), and going through the same steps would
add the term −ρVj∂Ũi/∂t to the right-hand side of (A 17) and (A 20). However, the
overlap also changes the boundary of the integral on the left-hand side of (A 18)–
(A 20) to V3 +V1 +V2 −Vj , resulting in an additional term − ∫

Vj
∂/∂t(ρU0

i ) dv on the
left-hand side. Within the present assumptions the new terms on both sides of (A 20)
cancel each other resulting in the same answer.

Another approach introduced recently by Druzhinin & Elgobashi (1998) leads to the
same conclusion. They also divide the flow field into U0− and ∆Ub. The corresponding
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pressures are p0 and ∆pb. The force acting on the surface of the bubble is then:∫
SB

(−pni + σijnj) dS =

∫
SB

(−p0ni + σ0
ijnj) dS +

∫
SB

(−∆pbni + ∆σbijnj) dS

= F0
i + (−∆Fbi ) = 0. (A 24)

Here ni is pointing to the liquid and F0
i and −∆Fbi are the results of the first and

second integrals, respectively. F0
i can be determined from the Navier–Stokes equation

for a flow field without a bubble. Assuming a small bubble

F0
i =

[
−∂p

0

∂xi
+
µ∂2Ũ0

i

∂xj∂xj

]
VB =

[
ρ

(
DŨ0

i

Dt
− gi

)]
VB. (A 25)

Druzhinin & Elgobashi (1998) argue (and we agree) that −∆Fbi is the change to the
total force acting on the bubble resulting from the modifications to the flow field due
to the presence of the bubble. Thus, ∆Fbi represents an additional force acting on the
liquid. Note that to determine ∆Fbi one needs to solve the following equation:

−∂∆pb

∂xi
+
µ∂2∆Ub

i

∂xj∂xj
= ρ

(
∂∆Ub

i

∂t
+U0

j

∂∆Ub
i

∂xj
+ ∆Ub

j

∂(U0
i + ∆Ub

i )

∂xj

)
. (A 26)

This expression is obtained by subtracting the Navier–Stokes equation for U0
i from

the equation for Ui. Since for a bubble ∆Fbi = F0
i , we obtain the same result as before.

Let us examine the implication of the result in (A 23) for several relevant simple
flows:

(i) A bubble rising in an otherwise stagnant fluid with gravity. Here U0
i = 0 and

as a result the force applied by the bubble on the liquid is equal to the buoyancy
force.

(ii) A bubble in a free falling liquid. Here

DU0
i

Dt
= gi, ∆Fbi = 0. (A 27)

(iii) A bubble moving in a horizontal nozzle that would have a steady flow in the
absence of the bubble and with no gravity. Here

∆Fbi = ρVB

[
DŨ0

i

Dt

]
= ρVBŨ

0
1

∂Ũ0
1

∂x
. (A 28)

To understand this result note that based on (A 9) the total momentum within
the control volume remains constant (assuming steady outer boundary conditions).
However, as the bubble moves it occupies volumes that in its absence would have
different velocities. Thus, to maintain an overall constant momentum the velocity of
the liquid in the rest of the control volume must adjust by an amount equal to the
rate of change in the liquid momentum displaced by the bubble.

(iv) A bubble located at r in a vortex with strength Γ , core radius R, uniform
vorticity distribution and without gravity. Here

|∆Fb| = ρVBΓ
2r/4π2R4 (A 29)

and the direction is towards the centre of the vortex. As discussed in the main text,
when several bubbles surround the core during entrainment they cause a reduction
in the core size and an increase in the core vorticity.

(v) In a general case, as discussed in the text, the stresses associated with the
undisturbed flow (hydrodynamic and due to gravity) are balanced by the lift, drag,



200 G. Sridhar and J. Katz

virtual mass and Bassett forces. Neglecting the latter and using (1a)

∆F b = ρVB

(
DU 0

Dt
− g
)

= −ρVB
[

3

8a
Cd|U rel |U rel +

3

8a
Cl |U rel |2U rel × ω

|U rel ||ω| −
1

2

(
DU b

Dt
− DU 0

Dt

)]
(A 30)

where bold letters indicate a vector and U rel = U −U b.

Appendix B. Uncertainty in velocity measurements – PIV
The accuracy of the PIV measurement depends on image quality (distortion, signal

to noise ratio, etc.), magnification, window and particle image sizes, the number of
particle pairs per window, the method used for interpolating the correlation data in
order to get sub-pixel accuracy, etc. The overall accuracy of the present procedure
was studied by Dong et al. (1992) and Roth et al. (1995). They show that the error
level decreases with increasing number of particle pairs in the interrogation window.
The improvement is doubled as the number of particle pairs is increased from one
to four, after which the improvement is slower (15% decrease when concentration
is increased to eight pairs). The uncertainty is also affected by image magnification.
In general, as the magnification is increased while keeping the number of particle
pairs the same, the accuracy of the technique also increases. The limiting factors
are the resolution limits of the film and lenses. In the present experiment the mean
displacements are typically around 40 pixels, and there are at least four particle pairs
in each interrogation window. Since the characteristic uncertainty in displacement is
0.4 pixels, the corresponding error in velocity is slightly less than 1%. The relative
error in vorticity measurement is less than 10%.

B.1. Uncertainty in particle tracking measurements

The uncertainty in velocity measurements using ‘particle tracking’ is due to errors in
measuring the particle displacements, as well to errors associated with interpolation
(Sridhar & Katz 1995). As noted before, individual particle displacements are deter-
mined by correlating between their corresponding particle traces. Enhanced sub-pixel
accuracy is achieved by fitting a curve to the correlation function and computing the
peak of the fitted function. Repeated examinations of randomly selected traces show
that uncertainty in measured particle displacements in 0.4 pixels. This value is conser-
vative since it represents the maximum deviation between results. The corresponding
error in the fluid velocity at a grid point, which is determined by interpolation, ranges
from 0.23 to 0.29 pixels/(laser pulse interval). Thus, by selecting a magnification of
1300 pixels cm−1, with typical particle displacement range between 80 and 120 pixels,
it is possible to maintain a relative error in particle tracking measurement of 0.25% to
0.35%. There are other sources of error as outlined below due to temporal averaging
and bilinear interpolation.

B.2. Temporal averaging error

This error occurs as a result of assuming a straight-line trajectory between traces
of an individual particle. To quantify this error, the velocity field is modelled as a
thin tube vortex ring, which is described by Batchelor (1967). Selecting a particular
site, the location of a particle at three instants is computed using the theoretical
flow field. The corresponding particle velocity is estimated from its discrete locations
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and compared to the actual mean value. As expected, the error in estimating the
velocity from the particle displacement increases with the delay between pulses and
with decreasing distance from the vortex centre. However, for all the data presented
in this paper, the temporal averaging error in velocity is less than 0.1%.

B.3. Interpolation error

Using the same vortex model, the accuracy of the velocity data obtained from
neighbouring particle traces is also estimated. The velocity and accelerations at four
points, located around the site of interest, is first determined. The present interpolation
scheme is then used to estimate the velocity and acceleration at the desired site
and compared to the exact values. We can now determine the overall uncertainties
in the velocity and vorticity due to measurement, temporal averaging and spatial
interpolation errors. The typical uncertainty in the fluid velocity is less than 0.9%
while the relative error in the vorticity is less than 10%.
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